Risks and Safety Hazards of Ammonia

Vhat is Ammonia?

Chemical Compound: NH₃

CAS Number: 7664-41-7

Ammonia is a naturally occurring and manufactured inorganic compound.

Other names: Anhydrous ammonia, Liquid ammonia,

Nitro-Sil, AM-Fol

Chemical Forms

Chemical Properties

17.03 Molecular weight: **Boiling point:** -33.35°C -77.7°C **Melting point:**

Vapour pressure: 10 bar (at 25.7°C)

Gas Colour: colourless Gas Density (Air): 2.994 kg/m³

Safety Hazards of Ammonia

Ammonia occurs naturally in the environment and is a commonly used industrial chemical. Applications of its use range from manufacturing (production of plastics, fibres, and other

chemicals), agriculture (as a fertiliser), and consumerrelated (food additive, cleaning agent, or refrigerant).

Risk of exposure can occur through;

- **Accidental Release**
- Leak
- **Transportation**

Ammonia is generally regarded as non-flammable. However, in high concentrations and certain atmospheric conditions, it is a fire and explosion hazard. Fire will produce irritating,

corrosive, and toxic gases.

It can also decompose at high temperatures forming hydrogen gas.

Health Risk: Ammonia Exposure Effects



EYES

- Burning
- Freezing
- Blindness

CHRONIC EXPOSURE

Long-term damage may result from severe short-term exposure.

RESPIRATORY SYSTEM

- Tightness
- Difficulty breathing
- Fluid in lungs
- Burning

SKIN

- Corrosive Frostbite
- Burning

Working Exposure Limits of Ammonia

The eight-hour Time-Weighted Average (TWA) recommendations of Safe Work Australia:

TWA concentration can result in irritation to workers.

Occupational Exposure Standards

Excursion Limit
25 ppm (17 mg/m3)
35 ppm (24 mg/m3)
no data available
350 mg/kg
2000 ppm/4hr
7,338 – 11,590 ppm at
1 hour

Dangers of Chemical Plumes

How long for ammonia gas to dissipate? The duration and behaviour of a chemical plume are dependent on many factors. These include the volume released, ambient temperature, time of day, relative humidity, wind direction and speed, terrain, natural and urban barriers and environmental absorption factors such as dense and sparse foliage.

When liquid anhydrous ammonia is released into the air from its pressurised container it expands rapidly. A large vapour cloud will form travelling close to the ground. As the chemical plume behaves as if it is heavier-than-air, the risk of exposure to humans is greater compared to some other gases.

Still have questions? Our team is available to assist with any queries you may have; contact us via info@minearc.com.au or visit our website for local details and more information www.minearc.com

